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Abstract

~
This thesis compares three estimation techniques in

application to the beta distribution: method of moments,
maximum likelihood, and minimum distance, The four para-
meter version of the beta distribution is used; it has two
shape parameters, and upper\gnd lower limit parameters,
Linear interpolation on order statistics is used to find
initial estimates of tke limits. The classibal-es;jnation
procedures, method of moments and maximum likelihooa,;re
applied through procedures found in the literature. A newer
technique, minimum distance, is applied for the first time
to the beta distribution,

Comparision of estimation techniques is accomplished
using Monte Carlo analysis,. Five sample sizes are
considered -- 4, 8, 12, 16, and 20 ~- and three pairs of
shape parameters ——- (3,3), (9,4), and (1,2) -- for a total
of fiftean cases. One thousand samples are goenerated for
each case, and each estimation technique is them applied to
2all samples.  Two effectiveness measures are used; they are
the mean squahe error of each parameter estimate, and the
Cramer—von Mises\distance between the estimated and the true
distribution. These effectiveness moasures are compared in
each case to determine which technigue provides the best

overall effectiveness.
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COMPARISON OF ESTIMATION TECHNIQUES
FOR THE FOUR PARAMETER BETA DISTRIBUTION

I. Introduction

Statistical estimation is currently used in private
industry, in government, and inm the military. Areas of
application include gquality control, logistics, and simula-
tion. As estimation theory has been studied over time,
different techniques have been developed for finding esti-
mates of the parameters of probability distributions based
on a sample from that distribution. Therefore, there is a
need to perform & comparison of estimation methods for
specific distributions and determine whether any one method
out-performs the others, The research performed for this
thesis undertakes such a comparison for the four-parameter
beta distribution; the estimation methods compared are the
method of moments, maximum likelihood, and minimum distance.

The following hypothetical situnation illustrates how
the results of this thesis might be used. A large interna-
tional conglomerate, known as the Bertrand Corporation,
produces a highly complex, technologically sophisticated
piece of equipment called the widget. The president of the
corporation, a very wise and knowledgeable man, realizes
that his customers will require informatiom on how long
their widgets will last. He therefore would like to know
‘the probability distribution of the time to failure (TTF) of
his prodncé;

The desired information could be obtained in a number




of ways, First, every widget produced could be operated
until it failed, and the length of operation recorded. This
technique would provide perfect information on the TTF of
each item; however, Bertrand Corporation stock could be
expected to drop drastically due to lack of sales.

A less costly method vould be to start by assuming that
the TTF is normally distributed. Then, a random sample of
the widgets could be taken from those produced, and run to
failure, The mean and variance of this sample could them be
used as estimates of the mean and variance of the underlying
normal distribution., The difficulty inhereat im this method
is that the normality assumption may not be valid. If the
analyst has no idea of the shape of the underlying distribu-
tion, he or she cannot be sure whether or not a normal curve
can be made to fit it with reasonable accuracy.

The third method is to assume as the underlying distri-
bution one which can take on a ]large variety of shapes, and
then take a random sample of widgets from which to find
estimates of the parameters of this distribution. The pres-
ident of Bertrand Corporation knows that the beta dis-
tribution can take on many shapes, but also realizes that
there are seversl methods available to perform the estima-
tion., He therefore would like to know what method will give
him the most accurate information on the time to failure of
the widgets, so that he can pass this information on to his
customers,

This thesis is undertakenm in order to provide the




aforementioned president, or anyone in a similar situation,
the answer that he or she requires. The two classical
methods of estimation, method of moments and maximum likeli-
hood, and a more recent technique called minimum distance
estimation, will be used to estimate the parameters of the
four parameter beta distribution., The techniques will then
be compared with each other, to determine if any one method
provides superior results, This thesis report will proceed
in four parts,. Fizst, the three estimation techniques will
be reviewed in general. Second, the beta distribution will
be described and application of the estimation methods to it
will be discussed. Third will be a summary of the Monte
Carlo analysis performed in order to evaluate the technigues
and make the desired comparisons. Last, the results and
conclusions of this thesis will be presented along with

suggestions for future work on the subject,.




II. Estimation Technigues

In the introduction, it was stated that this thesis
would compare method of moments, maximum likelihood, and
minimum distance estimation of the beta distribution. This
chapter will provide some background and general theory on
these three estimation techniques, First, however, a few
words about estimation in general are in order. Estimation
involves finding approximations, or estimates, of the para-
meters of a probabililty distribution through the use of
estimators., Mendenhall and Scheaffer define an estimator as
'**s rule that tells us how to calculate an estimate based on
the measurements contained in a sample’'’ (Ref 19:264). The
estimation process, then, is one of taking a sample from the
population of interest, performing calculations on the
sample points according to the '‘rule’’ of the estimator,
and using the results of these calculations as the estima~-
tors of the parameters of the underlying distribution.

Next, this chapter will consider in detail three
specific rules, or techniques, used for estimation. The
first two are known as the classical estimation techniques;

the third is a more recent method,

Method of Moments

‘"The method of moments is one of the oldest estimation
techniques’’ (Ref 4:7). The basic idea is fairly simple;
use as estimators those values of the parameters for which

sample moments equal population moments (Ref 19:300), The
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kth sample moment is computed from the sample as follows

(Ref 19:300):
R A
me ESX (2.1)

where n is the sample size and xi is the ith sample point.
The kth population moment is derived from the underlying

distribution using the formula (Ref 19:300):
wy = B(x5) (2.2)

The population moment will therefore be a function of the
parameters of the underlying distribution. Let p be the
number of parameters to be estimated. Setting up the

equations
' = m! k=1,...,p (2.3)

provides a system of p equations im the p unknown
parameters, which may be solved to find the method of mom-—
ents estimators of the parameters.

It is sometimes convenient to use functions of the
moments, rather than the moments themselves, when performing
method of moments estimation. This can be done, provided
the total number of different moments used is still equal to
the number of parameters being estimated. Two such func-

tions which are commonly used are the skewness and the




kurtosis. Before defining these, it is necessary to define
a different class of moments, known as the central moments.
The kth central moment, or moment about the mean, of the

sample is (Ref 18:18):

Illk=

e =

§(xi -0k (2.4)
i

where X is the sample mean (X = m{ = mi). The kth popula-

tion central moment is (Ref 18:18):

e = ECX - 05) (2.5)

where p = E(x) is the mean of the distribution. The central

moments are used in finding the sample skewness, K and

3’

population skewness, K as follows (Ref 18:20-21):

3‘
s 3/2
x3 = m3/(m2) (2.6)
3/2
13 = u3/(n2) (2.7)

The sample and population kurtoses are derived from the
following formulas, the '"’ again indicating the sample

statistic (Ref 18:20-21):

24 - n,/(a2)? (2.8)
)2 (2.9)
Kg = rge/ (n2 *
j




Since the first and second moments, skewness, and kurtosis
together involve only the first four moments, they can be
used to find moment estimates for four parameters.
Maximum Likelihood

The method of maximum likelihood uses as estimators the
paramoeter values which maximize the lika2lihood, or joint
density, of the sample (Ref 19:303). Let f(y;8) be the
underlying probability distribution, where 6 = (GI,OZ,N.OP)
is a vector of parameter values, Since the sample is chosen
at random, the joint density of the sample is merely the
product of the probability distribution evaluated at each of
the sample poinmts (Ref 19:171); the likelihood is therefore

defined by the formula,

L(xl.....xn;e) -]Tf(xi;e) (2.10)
[} 8
The goal is to find the vector © which maximizes this
function. This can be done by setting each of the p partial
derivatives 3L/ 3@

-~

0

x k=1,..,p to zero and solving for the

x° In practice, it is usuvally expedient to take the
natura{ logarithm of L before maximizing; this transforms
the product into a sum, which is easier to differentiate.
Maximizing 1a(L) will result in the same valumes for ;k'

since the natural logarithm is a monotonically increasing

fuonction (Ref 19:303). Therefore, the maximum likelihood




estimators are the roots of the p simultaneous equations

’a—g;l“ L(x ,eeer®,30,..00 ) = 0 L,k = 1,..p (2.11)
In some cases, the estimators cannot be solved for in closed
form and must be found by iteration (Ref 4:6).
Minimum Distance

Minimom distance estimation has been developed more
recently than the previous two methods; its development took
place in the 1950’'s., This method evolved from attempts by
estimation theorists to strike a balance between the charac-
teristics of robustness and consistency. The term robust-
ness refers to the ability of an estimator to adapt to
deviations in thé underlying model and remain efficient (Ref
21:3). An estimator is consistest if it converges in probdba-
bility to the true value of the parameter as the sample size
tends to infinity (Ref 19:309). The initial work in minimum
distance oestimation was performed by J. Wolfowitz. He
published a paper in 1953 (Ref 26), and another in 1957
(Ref 27) which outlined the minimum distance method and
showed it to be consistent; ’'in a wide variety of cases,
(the minimum distance method] will furnish super-consistent
estimators even when classical methods...fail to give con-
sistent estimators’’' (Ref 26:9).

It has not been until recently, however, that minimum
distance estimation has begun to be widely applied. Ia

their 1975 paper, Parr and Schucany applied the moethod to




estimation of the location parameter of a symmetric distri-
bution, emphasizing the normal distribution, and found it to
yield ’’'strongly consistent estimators with excellent ro-
bustness properties’’ (Ref 21:5)., Other applications have
been accomplished at the Air Force Institute of Techology
(AFIT) under the supervision of Dr., Albert H. Moore. They
are estimation of the location parameters of the generalized
exponential power distribution by Maj. Larry McNeese (Ref
17), estimation of the parameters of the generalized t
distribution, by Capt. Tony Daniels (Ref 4), estimation of
the three parameter weibull distribution, by Capt. Robert
Miller (Ref 20), and estimation of the three parameter gamma
distribution, by Capt. William L. James (Ref 13). These
studies generally found the minimum distance estimators to
be better than the classical methods, This thesis is a
continuvation of these efforts,

The minimum distance moethod is an extention of the
goodness of fit tests used in testing hypotheses. To test,
by goodness of fit, the hypothesis that a sample is from a
certain distribuotion with certain parameter values, one
constructs the distribution functiomn F(x;0) at these para-
meter values, and determines how well it fits the distribu-
tion function of the sample (called the empirical distribu-
tion function, or EDF) by some previously defined measure of
fit. Commonly, the goodness of fit measure is some measure
of the distance between F(x;0) and the EDF. Minimum

distance estimation merely takes as its estimate of @ those
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values which minimize the distance between F(x;9) and Sn(x).

Minimum distance estimation requires that three things

be specified: the family of distribution functions F(X;9),

a rule for obtaining the empirical distribution function,

{ . denoted Sn(x), and a measure of the distance between F(x;0)
and Sa(x). Previous applications to other families of dis-

tribution have already been mentioned; this thesis deals

with the beta family of distributions. There are several

EDF's which can be used, among them the 1/n step function
and median ranks. The distance measure is of crucial impor-
tance; often, distance estimators are identified by the name
of the distance measure us.d, They will be described in
more detail.

The most common distance measures are descibed in Parr
and Schucany; the following definitions are from this paper

(Ref 21:7-8). The first is the weighted Kolmogorov distance

sup

D,(Sa,F) xeR

£ Sn(x)-F(x;0)|E(F(x;0)) (2.12)

where ’'sup’ signifies the least upper bound and § is a
weighting function, This statistic should be familiar to
those experienced with the Kolmogorov-Smirnov goodness of
fit test (Ref 3:347). Another l;lsuro developed from a
goodness of fit statistic is the weighted Cramer-von MNises
distance

'2(Sn.F) = E(Sn(x)-l(x.ﬂ))zt(l(x.!))dr(x.!) (2.13)

$

10




where, again, § is a weighting function, Use of usniform
weighting, $(-)=1, defines the naweighted Cramer-von Mises
(CVM) measure Iz(Sn,F). The weighting scheme ((F) = —--2---,
0<F(1 defines the Anderson-Darling distance measure, which
is denoted AZ(Sn.F). Kuiper’'s maxzimal interval probability

distance is given by the equation,

V(Sn,F) = 200 o o|(sm(b)-sn(a)) - (F(b;@)-F(a;0))] (2.14)

Last, a general class of distance measures is defined by

Z. (Sa,F) =

e g

.j(sn(x)-p(x;o))zap(x;e)+b[ (Sn(x)—s(x;e)>ds(x;e)]2 (2.15)

This class includes the CVM measnre when a=0 and b=1,
Watson’s measure, denoted Uz(Sn,F) when a=1 and b=1, and
Chapman’s measure, when a=0 and b=1., The previous AFIT
studies which were mentioned have used the EKolmogrov,

Cramer-von Mises, and Anderson-Darling distance measures,

11




III. The Beta stribution

e

The beta distribution is becoming more and more
widely used in applied statistical analysis in
many business disciplines. For example, in finance

the beta distribution has been employed in an

sttempt to measure the probability of payment or

default in a credit granting decision. In manage-
ment, the beta distribution is often used im PERT.

And in marketing, the betes distribution is fre-

quently employed im Markovian brand-switching

models when transition probabilities are taken to

be random variables rather than parameters (Ref

B:1).

These are just a few ways in which the beta distribution
is applied in the ''real world.'' However, work on estima-
tion of the four parameter beta, with all four parameters
uaknown, is scarce; in preparation for this thesis, only onme
paper——by Glenn E. Tarr (Ref 24)--was found which dealt with
estimation of all four parameters. Virtually all of the work
done on estimation of the beta that this author encountered
either dealt only with the two parameter version or assumed
that the other two parameters woere known constants.

This chapter deals with the four parameter beta distri-
bution: what it is, and how the three estimstion techniques
described in Chapter II may be applied to it. The first
section of this chapter defines the beta family of proba-
bility distributions and reviews some of its character-
istics. The second section descibes the method used to get
preliminary estimates for two of the parameters, which are
required in applying the three estimation procedures in

Chapter II. The final three sections of this chapter consi-

der how the method of moments, maximum likelihood, and

12




minimum distance are applied to the beta distribution,

General
This thesis applies the three estimation techniques
explained in the previous chapter to the beta family of
probability distributions,. The most general form of the
probability density function (pdf) is referred to as the four
paramoter beta distribution, and has the form (Ref 14:37):
S 27 SRkt = S AL RS ST PRS- S ¥e 24

£(y;P,Q,A,B) = { B(P.Q (3.1)

0 , otherwise

The parameters A and B define the range over which the
function is defined; hence, any random variate from this
distribution must fall between A and B. The parameters P
and Q are known as the shape parameters, since they deter-
mine the shape of the graph of the probability demsity
function, Both P and Q are required to be strictly greater
than zero, and B must be strictly greater than A,
Exchanging the values of P and Q cause the graph to be
reflected about the midpoint of the line segment AB. The

function B(P,Q) is defined by the formula (Ref 19:130):

= [y 1(1-1)¥ 14y - [(RLLCQ)
B(P,Q) Ix (-1 ey = Letglas (3.2)

The special case where A=0 and B=1 is commonly known as

13




the standard or two parameter beta, and has the form (Ref

14:37):
e ¥ oa-n®t L eaa
f(y;P,Q,) = ’ (3.3)
o, otherwise

If A and B are kanowa, a random variable from the four para-
metexr beta can be transformed into a standard beta random

variable by the equation (Ref 14:37):

= I-A
X = $=% (3.4)

Some members of the beta family have specific names
attached to them, When Q=1 in equation 3.1, it is sometimes
called the power fumnctionm, or in equation 3.3, the stand-~-
ardized power function (Ref 14:37). The standard bets with
P=Q=1/2 is known as the arc-sine distribution, and is used in
random walk theory (Ref 14:39). Wher P=Q=1, the beta
distibution reduces to the well-known continuous uniform, or
rectangular, distridbution.

The cumulative distribution function (cdf) of the beta
distribution is found by integrating equation 3.1 from A to
the point at which the ¢df is to be evaluated. The cdf of
the standard beta is commonly called the incomplete beta
function, and is denoted Iy(P.Q) (Ref 19:131).

As mentioned in the introduotion, the main reason that




the beta family of distributions is useful inm fitting empir-~
ical distribution functions is its ability to take on many
different shapes,. A few of these shapes are presented in
Figure 3-1. A more complete collection of graphs of beta
density functions is included in Johnson and Koltz (Ref
14:42-44). When both P and Q are less than one, the
function is U-shaped. Vhen one is less than and the other
greater than ome, it is J-shaped. If both P and Q are
greater thanm one, the functiom is bell-shaped. If P is
greater than Q,.the function is skewed to the right, the
opposite if Q>P, The function is symmetric about (B-A)/2 if

P equals Q.

Obtaining Starting Values

The solution methods nsed to accomplish the three esti-
mation techniques explained in Chapter II all require an
initial estimate of the parameters A and B. This is done
througk interpolation performed on the sample points as
follows. First, the sample is sorted from smallest to
lagest, so that x(i) is the ith order statistic (Ref 19:229).
Then the median rank is found for the two smallest and two
largest points. TLke median rank of X(i) is computed usiag
the formula (Ref 15:31):

MR(X,, . ) = +20.3 (3.5)

(1)

For comvenience, ux(x(i)) shall be denoted Yi'

The interpolation method is displayed graphically in

15
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Figure 1. Some Shapes of the Beta Distribution




Figure 3-2. In finding the estimate for A, the slope of the
line connecting the first two points is calculated by the

usual formula:

m = (Yz-Yl)/(X(z)—X(l)) (3.6)

The estimate for A is the point at which this line inter-
iepts the x—axis. Using this slope formula on this lower
fbrtion of the line, and then solving for A, provides the

~following:

-~

A =X —YI/M (3.7)

(1)
The same procedure performed on the largest two order
statistics gives the formula for estimating B:

B = (I-Yn)/m + X (3.8)

(n)

where m is calculated using the nth and n-1st points, in
place of the second and first in equation 3.6.

To the auvthor’'s knowledge, this is a new method for
finding these parametors of the beta distridbution. It was
not mentioned in any of the literature that was read in
preparation for this thesis. It should be noted that inter-
polation will always give plausible estimates for A and B;
that is, ; is always smaller than the first order statistic,

and B is always larger than the last. The estimates would be

17
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expected to be more accurate with larger sample sizes,
Consistency, although not proven here, seems apparent; as n
increases, the first two order statistics would draw closer
to the true value of A, and therefore the li.car approxima-
tion would better fit the tail of the true cdf. An equi-
valent argument applies to B on the upper side. Intuitively,
it seems reasonable to expect the estimate of A to be more
accurate that E when the pdf is skewed left —-— that is, when
Q>P -~ and to expect ﬁ to be more accurate than ﬁ when the
pdf is skewed right —— when P>Q. This would occur because
the skewness causes a large portion of the data to be at one
end of the range, providing a closer interpolation at that

end,

Method of Moments

The method of moments is the only estimation technique
for which an application to the full four parameter beta was
found in the literature; that being a paper by Glenn Tarr
(Ref 24). Moment estimation of the standard beta is dis-
cussed in detail by Fielitz and Myers (Ref 8), and the
formulas for the two moments required to estimate the stan-
dard beta are available from this and various other sources
(Ref 14,18).

There are two possible approaches to performing moment
estimation of the betsa distribution, First, the estimates
of A and B found by interpolation could be kept as final

estimates, and the first two moments used to find P and Q in
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a manner similar to Fielitz and Myers. The second method is
to use the first four moments to acquire method of moments
estimators for all four of the parameters., Both of these
alternatives will be evaluated in this thesis;

The first method regquires the formulas for the first
two moments of the beta distribution. The central moments

will be used; the formulas are as follows (Ref 14:44):

= E(X) = A + ZTo==5= (3.9)

p, = Var(X) = [(B-A)2PQl/[(P+Q) (P+Q+1)]  (3.10)

These formulas are then equated to the first sample moment,
the sample mean X, and the second sample central moment, the

(biased) sample variance 32. These equations are then

solved for P and @, resulting in the folowing equations:

P = (xH%1-3%1/8%" - %° (3.11)

a = [(1-39)%3%1/8%* - 1-x%H (3.12)

where i‘ = (X-A)/(B~A) is the standardized sample mean, and

2t . 82/(B-A)2 is the standsrdized sample deviation. Using

8
the interpolated estimates of A and B, the values of P and Q
are thus easily found from the data. In Tarr's paper, he
suggests using thke two moment method for "’'relatively large’’

ssmples, and suggests the first and last order statistics as

estimates for A and B. (Ref 24:3).
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The above technique is only a ‘’partial’’ method of
moments estimation, since moments are not used to estimate A
and B. Glenn Tarr, in the paper referred to earlier, esti-
mated all four parameters by method of moments, using the
skewness and kurtosis. The population skewness and kurtosis

for the beta distibution are given by the formulas (Ref

18:44):

1/2 1/2

K, = [2(P-Q) (P+Q+1) 1/70(PQ) (P+Q+2)] (3.13)

3

K, = 3(P+Q+1) [2(P+Q)2+PQ(P+Q-6)1/PQ(P+Q+2) (P+Q+3)  (3.14)
In Tarr’'s paper, bhe unsed a shifted kurtosis; his
population kurtosis formula is equivalent to subtracting
three from equation 3.14. His formula for the sample
skewness and kurtosis are as follows (Ref 24:8):

~

Kk, = (2 -3at, 1, w27 1/80%a(a-1) (a-2)  (3.15)

~

K, = [(n3+n2)r4—4(n2+n)r311-3(nz—n)r§+1znr

2 4
4 T1 6T1]/

2
(sp*a(a-1) (n-2) (a-3)1 (3.16)

Where Ty - Ex} , and SD is the sample standard deviation.
i=]1

Since the skewness and kurtosis involve only P and Q,
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setting these formulas equal to the sample skewness and
kurtosis respectively provides two equations in two unknowas
which may be solved by numerical techniques, Once these
values are found, A and B are estimated nsing equations 8
and 9; solving for A and B rather than P and Q leads to the
formulas:

Sy1/2

A =X - ([s2P(P+Q+1)1/Q) (3.17)

= (E(P+Q)-AQ]/P (3.18)

-

Thus, the method of moment estimators have been formed for

all four parameters.

Maximum Likelihood

To the author’s knowledge, maximum likelihood estima-
tion of the complete founr parameter beta distribution has
not yet been developed. No reference to an ML techmigue
which estimates A and B were found in the literature. This
thesis will deal with a ’'’'partial’’ maximum likelihood esti-
mation process; that is, one thch keeps the interpolated
estimates of A and B as constants and estimates only P and Q
by maximum likelihood.

The technique used for maximum likelihood estimation of
the betas is that developed by Gnanadesikan, Pinkham, and
Hughes in 1967 (Ref 11). It dealt with the standard bdeta,

and performed the estimation using smallest order statistics.
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The resulting simultaneous equations were solved by Newton's
method, and it was stated that '"'The starting values...used
are crucial for the efficient convergence of the iterative
scheme’’ (Ref 11:611),

Beckman and Tietjen picked up on Gnanadesikan, et al,,
and developed a solution method which is ’'"fast, simple,’’
and for which ''No starting values are¢e required and no
convergence problems have been encountered’’ (Ref 2:254).

The likelibood equations to be solved are given as follows

(Ref 2:253):

A A

L(P) - E(P+Q) = 126, (3.19)
£(Q) - E(P+Q) = 126, (3.20)
where
n
: 1/
6 "H[(xi-A)/(B—A)] (3.21)
i
n
6 -.H-[(n-xi)/(n-n]““ (3.22)
i
’ :(Z) = E%‘“”‘z” (Ref 11:609) (3.23)

In order to solve the simultsneous equations 3.15 and
3.16, Beckman and Tietjen used the following procedure.

First, equation 3.16 was solved for Z(P+Q). This was sub-

23




stitoted into 3.15, which was then solved for $(P). Then,
the inverse of !(-) was taken of each side, providing an

equation for P. This equation was then substituted for P in

equation 3.16, leading to the followinmg equation (Ref 2:254):
B(@-F(187 (106, -126,+8(Q))1+Q)-126, = 0  (3.24)

The root of this equation was fouad by the secant method;

1('). The function

this same method was used to evalmats {-
$(°) was evaluated using sn spproximation givea in the

reference. The secant method ‘‘requires the user to specify
an interval...withis which the root is located’’ (Ref 2:254).
Beckman and Tietjem provide tables from which ; and 8 can be

found for given values of G, and G,; & listing of their

1 2

computer program is also provided. This thesis useos that
program to find the maximum likelihood estimates of ; and 8.
given the interpolated estimates of A and B.

In a comment on the Fielitz and Myers paper (Ref 8),
which favored the method of moments for estimating the beta
distribution, and on a rebuttal by Romesburg (Ref 22), which
supported maximum likelihood, EKottas and Lau (Ref 16) wrote
an excoellent article which summarizes both classical methods
of estimating the beta, provides historical perspective, and
comments on which is the better technique for estimating P
and Q. They state that Fisher, the initial developer of the

saximum likelikood method, ‘'mathematically proved that the

inherent variance of an MN estimator [of the beta distribu-
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tion)] is always greater than or equal to that of the corre~
sponding ML estimator and approaches the latter only in near
normal cases’'’' (Ref 16:529). In an article which focused on
the small sample case, Dishon and Weiss reached a similar
conclusion; they compiled a table comparing the MM and ML
estimators for various parameter values and sample sizes, and
concluded that ''with few exceptions the ML estimator is more
accurate for low n than is the moment estimator’’ (Ref 5:4).
In order for the results of this thesis to be consistent with
these findings, the ’''partial’’ maximum likelihood estimates
of P and Q would be expected to be more accurate than the

‘’partial’’ moment estimates.

Minimom Distance

This thesis represents, to the author’'s knowledge, the
first attempt at estimation of the parameters of the bdeta
distribution by the minimum distance technique. It is the
first attempt at AFIT to estimate more than one parameter by
minimum distance. Although some of the AFIT theses,
mentioned earlier (Refs 4, 13, 17, 20), did deal with more
than one parameter, only one parameter was estimated by
minimvm distance; this estimate was then unsed to improve the
estimates of the other parameters found by other methods.
This thesis will attempt to find minimuom distance ostimates
for all four parameters of the beta distribution.

The empirical distribution functiom to be used in this
thesis is the 1/n step function, which assigns the ith point

of the ordered sample the value i/n. The Cramer-von Mises
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distance measure will be used. VWhen applied to the 1/a step
function, the CVK measure defined in equation 2.13, with

uniform weighting, reduces to (Ref 23:731):

v2(Sn,F) = SIF(X )- Zi‘Zl]2 (3.25)
is n

Where F(xi) is the ¢cdf evaluated at the ith sample point.
This same source provides similar formulas for applying many
of the other distance formulas mentioned in Chepter II to
the 1/n step fumction EDF.

The process used to find the minimum distance estimates
is as follows, First, the initial estimates of A and B are
found by interpolation. Then the moment equations, 3.11 and
3.12, are used to get starting valones for P and Q. Holding
A and B fixed, equation 3.25 is minimized for P and Q (the
parameters P, Q, A, and B are implicitly cont‘ined in
F(Xi». After this minimization is sccomplished, P and Q are
held constant at the new values, and 3.25 is minimized for A
and B. The resulting values of P, Q, A, and B are the

minimum distance estimates of these parameters.




IV: Monte Carlo Analysis

This chapter deals with the specific method used to
perform the comparison of estimation techniques which is the
main purpose of this thesis. The comparison is performed
using Monte Carlo analysis. There are basically three steps
to a Monte Carlo anaysis of an estimation method., First,
random samples from the distribution to be estimated are
generated. Second, the parameters of the distribution are
estimated from these samples. Third, the estimations are
evaluated as to how well they approximated the true distri-
bution. This chapter will discuss each of these steps in
detail,

Since there are a vast amount of data and large numbers
of calculations involved in Monte Carlo analysis, use of a
high-speed computer is a necessity. A Control Data Corpor-
stion (CDC) computer system, located at Aeronautical Systems
Division, Wright-Patterson Air Force Base, Ohio, was used in
performing the analysis for this thesis. In programminag
each of the three steps ontlined above, existing software
was used whenever possible; specifically, subroutines from
the International Mathematical Statistics Library (IMSL)
were widely used. The reader ;hould refor to the IMSL
manual (Ref 12) if specific information about these routines

is desired.

Genezation of Data

In order for the comparisons made by this thesis to bde
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valid, they should be masde for & number of sample sizes and
several different combinations of parameter values, Five
sample sizes were used: 4, 8, 12, 16, and 20. Fo; each of
these sample sizes, three combinations of P and Q were used:
P=3, Q=3; P=9, Q=4; and P=1, Q=2 (refer to Figure 1 in
Chapter III for a graph of these curves). In order to save
on computer time, only one combination of values was used
for A and B; different values are not expected to have an
affect on estimstion ability, since such a change would only
result in a linear translation along the axis. The values
A=2, B=10 were arbitrarily chosen for this analysis.

For each of the 15 cases (five sample sizes times three
P, Q combinations), 1000 samples were generated for use in
estimation, Generation of beta random variates was accom-
plished using the IMSL routine GGBTR, which provides an
array of standard beta random variates for a specified P, Q,
and sample size, The resulting array was then sorted using
the INSL routine VSRTA. The random variates were then
unstandardized, using equation 3.4 when solved for Y instead
of X, so that the random variates now formed a sample from
the desired four parameter bets distribution,

Since the interpolated estimates of A and B are needed
for all three estimation techniques, they were calculated in
the same program which performed the data generation. The
method is exactly as described in Chapter III; the median
ranks of the first two and last two points of the previously

sorted sample were calculated using equation 3.5, the slopes
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were found using equation 3.6 and a similar expression for
the two highest points, and then equations 3.7 and 3.8 were
applied to calculate the estimates, The mean and standard
deviation of each sample were also calculated at this time.
The number of replications (1000 in this analysis), sample
size, true values of P, Q, A, and B, and 1000 sets of
replication number, list of random variates, interpolated
estimates of A and B, mean, and standard deviation were
stored on permanent file for use by each of the three esti-
mation programs., A listing of the program which performed

this data gemeration is provided in Appendix C.

Computerization of Estimation Techniques

Mothod of Moments. In the previous chapter, it was
explained that two sets‘of moment estimators would be calcu-
lated. They are the ’‘partial’ MM estimators, using the
interpolated estimates of A and B and finding ; and 8 by the
first tvo moments, and the "full’ MM estimators, which use
the first two moments, skewness, and kurtosis to calculate
;. 8. ; and ﬁ. The computer program written to do this is
included in Appendixz D.

The 'partial’ method of moments estimates were found
first; this was done through direct application of equations
3.11 and 3.12. The 'full’ MM estimation technique is based
on the procedure suggested by Tarr (Ref 24). Finding ; and
3 from the skewness and kurtosis involves solving a system

of two nomlinear equations in two unkanowns, The IMNSL

routine ZSCNT was used to accomplish*this, using the
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'‘partial’ MM estimates of P and Q as starting values, If
the program were to attempt to estimate either P or Q as
less than zero, the program was designed to use the
'partial’ moment estimators for that sample. Vhen the pro-
gram was executed, this was found to occur for virtually
every sample; when attempts to remedy this failed, Tarr'’s
approach was abandoned. These results will be discussed
further in the next chapter.

Maximum Likelihood. The program used to perform the ML
estimation is teken from the article by Beckman and Tietjen
(Ref 2:258). The only changes made were for input of data,
calculation of G1 and Gz,

should refer to the source article for a program listing;

and output of results. The reader

since the changes were superficial, the listing will not be
provided here.

Minimum Distance. Computerization of the minimuom dis-
tance method follows directly from the process outlined in
Chapter III. After the data was read in, the IMSL routine
ZXMIN was used to perform the minimization. This routine
minimizes a fumction, in this case equation 3.25, for an
array of parameters. Parr and Schucuny used this routine in
their analysis (Ref 21:21). Using the two-moment estimates
as starting values, ; and 5 were used first as input para-
meters for ZXMIN, while X and ; were held constant through

use of a COMMON statement. When this minimization was com-

pleted, ZXIMIN was used s second time, this time with A and B

¢
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as input parameters, using the interpolated estimates as
starting values, while the values of ; and a found im the
first minimization were held constant using a COMMON state—
ment. The estimate of A was set equal to the first order
statistic if ZXMIN attempted to estimate A greater than x(l);
similarly, X(n) was used for g if ZXMIN attempted to set ; <
X(n). The listing of the computer program used to perform

the minimum distance estimation is inclvded in Appendix E,.

Comparison of Estimation Technigques

The third step in the Monte Carlo analysis is to
evaluate the estimates; this evaluation will be used as a
basis in comparing the estimation techniques. There are two
approaches which could be nsed for this evaluation, The
first approach would be to individually measure how close
the estimates of each parameter are to the true value of
that parameter. The measure commonly used for this type of
evaluation is the mean square error (MSE). The second
approach is to calculate an overall measure of how well the
estimated distribution fits the true distribution. A
distance measure of the type outlined in Chapter III is an
appropriate measure for this approach,

This thesis nused both of these approaches; the mean

- - -~

square errors of P, Q, A and B were found, and the mean CVM
distance between the estimated and true cdf calculated, for
each estimation method and each of the 15 cases of sample

size and P, Q@ values., The program written to perform dboth




of these evaluations is listed in Appendix F. These two
approaches will now be explained in more detail.

quare Errors. The mean square error is a
measure, based on repeated estimation, of how well an esti-

mation method has estimated a given parameter. The formula

for calculating the mean square error is as follows:

MSE(8) = [S(ei-e)z]/u (4.1)
i=1

~

where © is the true value of the parameter, Oi is the ith
estimate, and N is the number of times the estimation is
performed-—in this analysis, N=1000. A difficulty in using
MSE’'s when many parameters are estimated is that conflictinmg
results are possible; estimation method A may have the
smallest MSE for parameter 1, while method B has the
smallest MSE for parameter 2 for the same case. Another
potential difficulty with MSE's is that they are not scale
invariant; the same size MSE may be highly significant for a
small valued parameter, but insignificant for a larger one,
This can complicate comparison of MSE's for differemnt para-
meter values.

CVYM Distance. The Cramer-von Mises (CVM) goodness of
fit statistic wz was defined by equation 2.13, ﬁsing the
uniform weighting &(°)=1., 1In this usage, however, the esti-

mated ¢df F is used in place of Sa; the integral is

multiplied by the sample size to form the actual distance
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measure (Ref 23). Since dF(x)=§§dx=f(x)dx, the formula for
the distance between the estimated cdf F and the true cdf F

is:

w2 (F,F) = nI(F(X.Q)-F(X.Q))zf(x.ﬂ)dx (4.2)

~ A A

where 6=(P,Q,A,B), §=(;.Q,A.B). and f(x,0) is the true pro-
bability density functiom (pdf). This integral was
evaluated using 16 point Gaussian quadrature. This solution
technique requires that the integral be over the limits -1

to 1; this is satisfied through the identity (Ref 10:221):
I,(,)dx = 25313 Lh:el&thts]dt (4.3)

where
(b-a)t+b+a

Gaussian quadrature estimates an integral with 1limits

-1 and 1 using a weighted sum, as follows (Ref 1:916):

jx(x)dx ~ S'i'(xi) (4.4)
=1 i=1

where w, and x, are the ith Gaussian weights and gquadrature

i i

33




points respectively, and n is the number of points; for this
analysis, n=16. The appropriate weights and points were
taken from the Handbook of Mathematical Functions (Ref
1:916). Since it is possible that the estimates of A and B
will be inside of the true values, some of the quadrsture
points may be in prlaces where ; is not defined. This problem
was overcome by defining ;(x) to be zero when x<; and one
when X)g. This situation is depicted graphically in Figure
3. Having the estimates outside of the true values of A and
B presents no problem, since the integral is calculated only
between the true values.

The CVM statistic was calculated as just described for
each of the 1000 replications, The sample mean and standard

deviation of the CVM statistics can therefore be calculated

using the usual formulas:

0
2= [312]11000 (4.5)
i=]
1000
sp(w?) = ) (w2-#2)2/1000 (4.6)
151

2
i

Since the number of replications is large, the central

where W, is the CVM distance of the ith estimation.

limit theorem implies that the mean CVM statisic is appozxi-

mately normally distributed (Ref 19:252). Therefore, a

confidence interval for the mesn CVM statistic may be calcu-
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lated (Ref 19:277). The formula for the confidence interval
is as follows (Ref 25:195):

2

<2 2 2 -
P(¥*-Z_,, SD(V Y/ ¢ B(W®) ¢ W vz

/

lzsn(wz)/yﬁ)-1-a (4.7)

where a is the significance level, Za/2 is the value of the
standard normal leaving an area of a/2 to the right, and N
is the nomber of replications, in this case, 1000.

The CVM distance has the advantage over the MSE of
being a single measure of fit for all four parameters, and
also of being scale invariant with respect to the size of
the parameter values. One disadvantage, which goes along
with the first advantage, is that information about the
individual parameters is lost. At times, one may wish to
know which method worked better om a particular parameter;
for this, the MSE is the better measure. It should be clear
that there is no bias introduced by using the CVM measure
both in finding the minimum distance estimate and then again
in evaluating this estimate. That is because during minimi-
zation the distance between the estimated distribution func-
tion and the empirical distribution function is measared,
while during evaluation the distance measured is between the
estimated distribution function and the true distribution

function.
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V. BResults apd Conclusions

Roesults of Comparisons

The naumerical results of the two comparison approaches
are summarized in the appendices. There are fifteen tables
in each appendix, omne for each case of sample size and
parameter values. Appendix A contains the tables of mean
square orrors. The three estimation methods; method of
moment estimation (MME), maximum likelihood estimation
(MLE), and minimum distance estimation (MDE) are listed down
the side. The mean square errors of ; (MSEP), 5 (MSEQ), ;
(MSEA), and S (MSEB) are then listed across the row for each
method. Appendix B contains the means, standard deviations,
and confidence intervals for the CVM statistics. Again, the
three methods are listed down the side. Across each row
are, in order, the sample mean of the CVM statistics (MCVM),
the sample standard deviation of the CVM statistics (SDCVM),
the lower limit and the upper limit of the 95% confidence
interval of the mean of the CVM distance (95% C.I.). It
should be noted that SDCVM is an estimate of the population
standazrd deviation; it must be divided by 75333 to get an
estimate of the standard devistion of the mean.

The reader may note that, in some cases, the MSE's and
the mean CVM statistic seem to contradict esch other; that
is, one method may have MSE’s equal to or smaller than
another for all parameters, but the other method has a

smaller mean CVM gstatistic, The case of N=4, P=9, Q=4 is

soch a case; both MME and MLE are the interpolated sstimates

37




of A and B, so these MSE's are equal. However, the MSE’'S of
both ; and 8 are smaller for the MLE, but the mean CVM 1is
smaller for the MME.

This phenomenon canm occur because of the way in which
the four parameters of the beta distribmtion interact. The
reader shounld refer to Figure 1 in Chapter III, and revievw
the shape of the beta when P=9 and Q=4., The curve remains
very close to the x—-axis until about 1/4 of the way from A
to B, For this reason, A is nsvally interpolated at about
this point on the axis. Using this as the lower limit,
however, the distribution is much more symmetric than when
the true value of A is used. Therefore, the values of ; and
8 which best approximate the curve for the intetpolfted
estimates of A and B are different from the true values of
P and Q. A set of values which are forther away, in an MSE
sense, from the true values than anmother set, may thus be
closer in a distance sense to the true distribution due to
the estimation of A and B.

Since the MSE's and the mean CVM statistics contradict
each other at times, it is necessary to choose one to serve
as a basis of comparison between the estimation methods.
The moean CVN statistic will be used since it is an oversll
measure and does not depend on the particular parameter
values. The method with the smallest mean CVM statistic
provides the closest fit, on the average, to the true dis-~

tribution, Using this criterion, the moment estimate is

ranked first, followed by mazimum likelihood and then mini-
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mum distance, for all sample sizes in cases P=Q=3 and P=9,
Q=4; and when N=4 for P=1, Q=2. For the other four sample
sizes with P=1, Q=2, maximum likelihood has the smallest
meap CVM, with MME next, and then MDE. THe MSE, however, is
smaller for MLE than for MME in most of the cases.

Using just the point estimates of the mean CVM distance
gives no indication of whether the differences between the
MCVM for each method is large enmough to be significant. For
this, the 95% confidence intervals can be used. If the
confidence intervals of two methods overlap, this indicates
that the mean CVM distances of the methods are not signifi-
cantly different. This comparison is equivalent to perform-
ing a t test of the difference between the means. Since
there are three means being considered, comparing these
three confidence intervals equates to performing multiple t
tests; for this reason, the effective a level -~ that is, the
probability of finding two means to be significantly diffe-
rent when they are not — is actually somewhat higher than
0.05. When the confidence intervals listed in Appendix B
are compasred, they show that the 95% confidence intervals
for the MME and MLE distance measures overlap in every case.
This indicates that the difference between them is not
statistically significant, Comparing confidence intervals
for the MDE indicates mixed results., In some casoes (N=4,
P=3, Q=3; N=4, P=1, Q=2; N=12, P=9, Q=4), the CVN statistic
of the minimum distance method is significantly greater than

for both of the other methods. In five cases (N=4, P=9,
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Q=4; N=8, P=9, Q=4; N=12, P=3, Q=3; N=12, P=1, Q=2; N=20,
P=3, Q@=3), the CVM statistic for MDE is sigmnificantly
greater than the smaller of the other distances, but not the
larger one. In the other seven cases, all three confidence
intervals overlap, so that none of the differences are
significant.

Although not used in comparing overall effectiveness,
the mean square errors must be used if effectiveness in
estimating a particular parameter is to be compared.
Problems arise, however, in comparing the MSE's of ; and 5.
since they depend on the values of ; snd ; as described

‘ earlier, HBowever, since the interpolated estimates of A and
B do not depend on other parameters, these can be compared
to the MDE estimates of A and B using MSE‘s., In this com-~
parison, the MDE fares better tham in the previous para-
graph, Overall, the differences in the MSE’'s are small,
The interpolaeted estimates are better in all cases with
sample size four. For sample size eight, neither method has
a clear superiority., With N=12, the MSE's using minimunm
distance are smaller in all cases exceptﬂfo: ; when P=1, Q=
2, where it is slightly larger. The minimum distance osti-
mates have a smaller MSE than the interpolated estimates of
A and B for all cases with sample sizes 16 and 20,

In Chapter III, in the section on obtaining starting
values, a number of suppositions were made concerning the

interpolated values of A and B. The results in Appendix A

can now be used to test these suppositions., Consistency was

40




the first supposition; the accuracy of the estimates was
expected to increase as sample size increasd. This is
supported by the results. The mean square errors of both ;
and ; decrease monotonically as the sample size increases for
all three sets of parameter values. The second supposition
was that left-skewed distributions wonld provide better
estimates of A, while right-skewed distributions would pro-
vide better estimates of B, This is also borme out by the
results, For the case P=9, Q=4, which is skewed right, the
MSE of ; is always much less than the MSE for ;: in fact,
the MSE of ; is always at least nine times the MSE of ;,
For the left-skewed case, P=1, Q=2, the MSE of R is always
less than the MSE of S by at least a factor of seven. In

the symmetric case, P=Q=3, the MSE’'s of A and B are nearly

equal in all the sample sizes.

Conclusions

Does the presideant of the Bertrand Corporstion have an
answer to his question? What is the best method? Based
upon the results of this analysis, and for the ranmge of
sample sizes considered, the moethod of moments using inter-
polated values of A and B seems to the the best choice of
the three methods investigated. It provides estimates which
fit the true distribution at least as well as the other two
methods, and is more easily computed thanm either the methods
of maximum likelihood or minimum distance. For a single

sample, the moment estimates may be easily found using a
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desk calculator., The method of maximum likelihood provides
estimates of nearly equal accuracy to the method of moments,
and is certainly a viable alternative; however, the computa-
tion is more involved and, for an exact solution, requires
computerization., The minimum distance method, when applied
to all four parameters, does not appear to be as good,
especially in light of the fact that it requires much more
computer time than the others to obtainm a solution. The
fact that its estimates of A and B were improvements would
seem to indicate that minimum distance might be successfully
applied to the location-type parameters of the beta distri-
bution.

The four moment estimation techmnique suggested by Tarr
(Ref 24) is apparently not as straightforward as he seems to
believe., Careful re-reading of this paper revealed that the
author apparently did no actual verificatiom or Momte-Carlo
analysis of this technigque at all., His tables seem to have
been generated merely by choosing values of P and Q,
plugging them into the formulas for the population skewness
and kurtosis, and tabling the resulting values. More work
is required on this method if it is to be a viable

alternative to the others presented herein.

Recompendstions for Further Study

As stated, investigation into the viability of Tarr'’s
method is a possible area of study. Another possibiliy
would be extension of the maximum likelihood method in

Beckman and Tietjen (Ref 2) to all four parameters. A third
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alternative would be to combine MME and MLE into a 'hybrid’
approach., This method could use the interpolated values of 3
and ; to obtain ML estimates of ; and 6, just as done in this
thesis. Then, these estimates of ; and 5 could be used in
equations 3.17 and 3.18 to obtain new estimates of A and B
with the first two moments. It would then be possible to use
these to re—estimate P and Q, and perhaps loop through this
procedure until the desired accuracy is achieved. The study
would have to determine if this would lead to significant
improvements over the methods evaluated in this thesis.
Regarding minimum distance estimation, this was the
first attempt at applying this method to the beta distribu-
tion, and it should not be abandoned just because it is not
;et as good as the other techniques. There is still work to
be done., One area that could be explored would be to try
other distance measures to see if they may lead to an im-
provement. For instance, the Anderson-Darling statistic may
turn out to be better for estimating A and B, since it is
more heavily weighted at the tails of the distridution,
Another possibility would be to only estimate one parameter
by MDE, One may wish to use Tarr’'s formulation for the beta
distribution, which uses xo for A as the location parameter,
and M, which equals B—~A, as a range parameter (Ref 24:1). xo
and M could be found by interpolation, ; and 5 by MM or ML,
and then xo could be refined by MD, keeping i, ;, and a

fixed. This new xo could then be used to improve the esti-

mates of P and Q. This would also cut down on the use of
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computer time, since only one parameter, rather than four,

would be estimated by minimum distance.
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Appendix A

Tables of Mean Square Errors

The following notation is used in this Appendix,.

Term Notation

Method of Moments Estimatiom ........... MME
Maximum Likelihood Estimation .......... MLE

Mipnimaum Distance Estimation ............ MDE

N Mean Square Error of P .....cce0ceeuse.. MSEP
Mean Square Error of Q .. cesessassss. MSEQ
Mean Square Error of A ........c¢e0e0.... MSEA

[-- I
.
.
.
.

Mean Square Error of B ,......... «eess.s MSEB

Monte Carlo sample size is 1000 and true values of A
and B are 2 and 10 for all tables.
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TABLE A-1I

Mean Square Errors

Sample size 4

True P 3

True Q 3
R R R R E I T P E S S R EFE N R R R E T N T E E T E R R R E E E S N S E T EEEEEEENRERERERIEEE
| MSEP MSEQ MSEA MSEB |
| MME 3.742108 3.658086 4.668322 4.653648 |
| MLE 2.739536 2.649655 4.668322 4.653648 |
| MDE 12.371356 14.542017 4.744504 4.737503 ’
|

TABLE A-II

Mean Square Errors

Sample Size 4

True P 9

True Q 4
it * ¢ + 2 2 3 2 2 + £ 2 2 2 ¥ 3 2 £ 2 F T E 2 2 XX X E T T E R R E YR SRS OL
| MSEP MSEQ MSEA MSEB |
| MME 60.861580 8.601137 16.911807 1.726146 |
| MLE 55.594636 6.942450 16.911807 1.726146 |
: MDE 67.128382 13.105965 17.014121 1.756985 :

TABLE A-III

Mean Square Errors

Sample size 4

True P 1

True Q 2
| MSEP MSEQ MSEA MSEB |
| MME 0.410244 0.936122 1.,217973 8.993774 |
| MLE 0.626805 0.645073 1.217973 8.993774 |
: MDE $.416876 21.291772 1.239676 9.114334 :

49




TABLE A-1IV

Mean Sguare Errors

Sample size 8

True P 3

True Q 3
I EErEEEEAES AR E S R R R I S e R E E E P E S E E E r  E R E E EEEEEE E E R ERE RS
| MSEP MSEQ MSEA MSEB I
| MME 3.427817 3.354894 2.904387 2.940100 |
| MLE 3.049777 2.987382 2.904387 2.940100 |
| MDE 9.766766 9.877664 2.890916 2.957770 }
I__

TABLE A-V

Mean Square Errors

Sample Size 8

True P 9

True Q 4
FrY'T T 11t 1 s rrrrssr:rxrrx:ti1r:z 11111tz ++:+t 3ttt ¢+ 3t ¢+ 1 3§ 2 2 % 2 £ % & J
I MSEP MSEQ MSEA MSEB I
| MME 56.805536 7.960173 13.9347317 1.117937 |
| MLE 54.788050 7.319176 13.934737 1.117937 |
= MDE ° 60.792229 18.236968 13.786411 1.111636 I

TABLE A-VI

Mean Square Errors

Sample size 8

True P 1

True Q 2
| MSEP MSEQ MSEA MSEB |
| NME 0.332060 0.975033 0.335525 4.998726 |
| MLE 0.328806 0.862249 0.335525 4.998726 |
{ MDE 8.262157 23.410740 0.363392 4.971074 {
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TABLE A-VII

Mean Square Errors

Sample size 12

True P 3

True Q 3
A EE EE R EE R E R P E R E R E AR E E E T E N E RSN EEEEEEEEEEEEEREE SRS
MSEP MSEQ MSEA MSEB |
| MME 2.825820 2.868660 2.089426 2.126352 |
| MLE 2.761430 2.815917 2.089426 2.126352 |
: MDE 5.539327 4.950296 2.013997 2.032997 =

TABLE A-VIII

Mean Square Errors

Sample Size 12

True P 9

True Q 4
| MSEP MSEQ MSEA MSEB |
| MME 52.775368 7.208131 12.263634 0.858765 |
| MLE 52.519962 7.059538 12.263634 0.858765 |
} MDE 49.354920 9.095091 12.013108 0.826734 |
]

TABLE A-IX

Mean Square Errors

Sample size 12

True P 1

True Q 2
| MSEP MSEQ MSEA MSEB |
| NME 0.230257 0.838969 0.142688 3.206688 |
| MLE 0.207590 0.777774 0.142688 3.206688 |
= MDE 1,013119 3.495416 0.146702 3.129456 I
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TABLE A-X

Mean Square Errors

Sample size 16

True P 3

True Q 3
P N S N R T E R E R e S e R E S R R S E S EE RS EEEER RN ENEN I
I MSEP MSEQ MSEA MSEB |
| MME 2.609627 2.558815 1.826545 1.650983 |
| MLE 2.708616 2.671452 1.826545 1.650983 |
| MDE 2.943447 2.845556 1.732211 1.560583 !
i

TABLE A-XI

Mean Square Errors

Sample Size 16

True P 9

True Q 4
| MSEP MSEQ MSEA MSEB |
| MME 50.354216 6.726745 11.302901 o0.716087 |
| MLE 5$1.150863 6.818277 11.302901 0.716087 |
: MDE 46.387784 6.755438 11.102680 0.690490 ‘

TABLE A-XII

Mean Square Errors

Sample size 16

True P 1

True Q 2
SRS ESSESEEESEEESSNESENAESSRNRNEEESN NS ENREEEIEIEE SN SRS N SR N A SE A
| MSEP MSEQ MSEA KSEB |
| MME 0.168482 0.782000 0.093014 2.697157 |
| MLE 0.155296 0.77795%0 0.093014 2.697157 |
{ MDE 0.364832 1.755449 0.092245 2.604381 }
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TABLE A-XIII

Mean Square Errors

Sample size 20

True P 3

True Q 3
| MSEP MSEQ MSEA MSEB |
| MME 2.300955 2.353331 1.454751 1.414300 |
| MLE 2.483768 2.551249 1.454751 1.414300 |
: MDE 2.645247 2.566947 1.369513 1.325909 ’

TABLE A-XIV

Mean Square Errors

Sample Size 20

True P 9

True Q 4
R R R N S R R T R R N T N T E R A E S EE RS EE SR ENE SN E SR ERERES
| MSEP MSEQ MSEA MSER i
| MME 49.079484 6.438000 10.798213 0.640201 |
| MLE 50.543684 6.711302 10.798213 0.640201 |
= MDE 43.965367 5.839172 10.579763 0.610275 =

TABLE A-XV

Mean Square Errors

Sample size 20

True P 1

True Q 2
 BEEESEEESEEAEMEEREESREEBEAEEEAREEESEEESREAEREREREERENENSISIE IR IS AN S RN R R R
| MSEP MSEQ MSEA NSEB |
| MME 0.125813 0.645373 0.057157 2.090599 |
|  MLE 0.133994 0.639272 0.057157 2.090599 |
= MDE 0.238399 1.041494 0.056218 2.006221 =
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Appendix B

Tables of Cramer—von Mises Distance:
Means, Standard Deviations, and Confidence Intervals

The following notation is used in this appendix.

Term

Method of Moments Estimation ........
Maximum Likelihood Estimation .......
Minimum Distance Estimation .........
Mean CVM Distance .....c.cveeoccesesns
Standard Deviation of CVM Distance ..

95% Confidence Interval
upper and lower limits ......cvc0000.

Notation
... MME

«.. MLE
... MDE
.. MCVM

. SDCVM

95% C.I.

Moante Carlo sample size is 1000 and true values of A

and B are 2 and 10 for all tables.




4 ——

TABLE B-1

CVMN Distance Statistics

Sample size 4

True P 3

True Q 3
l MCVN SDCYN 95% C.I. [
| MME 0.135119 0.131025 0.126998--0.143240 |
| MLE 0.139685 0.136396 0.131231--0.148139 |
= MDE 0.161920 0.163691 0.151774--0.172066 }

TABLE B-II

CVM Distance Statistics

Sample size 4

True P 9

True Q 4
AR T E E EE R R T RS S R TR N e e T R E T I R E R E R E R E R R S S E TS
| MCVM SDpCyM 95% ¢.1, I
| MME 0.138114 0.132926 0.129875--0.146353 |
: MLE 0.143925 0.140191 0.135236~--0.152614 {
| |

MDE 0.161689 0.162098 0.151642--0.171736

TABLE B-I1II

CVYN Distance Statistics

Sample size 4

True P 1

True Q 2
--.-.--.-..---.-....---‘..----.---838-'8.‘.‘----.-..'-.-..-‘
| MCYN SDCYX 5% C.1.
| MME 0.140421 0.142939 0.131562--0.149280 |
| MLE 0.143407 0.147824 0.134245--0.152569 |
= MDE 0.164817 0.168862 0.154351--0.175283 !
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TABLE B-1V

CVM Distance Statistics

Sample size 8
True P 3
True Q 3
AR EE R T E R A E I E R T R EE T E S R R R N E S EE R N ERE S E R RS S
MCVM SDCYVM 95% C.I1.

MME 0.128062 0.144414 0.119111--0.137023

NLE 0.129722 0.148687 0.120506-~-0.138938

MDE 0.144501 0.164251 0.134321-~0.154681

TABLE B-V

CVM Distance Statistics

Sample size 8
True P 9
True Q 4
NCYX SpCYM 93% C.I,
MME 0.122436 0.128460 0.114474--0.130398
NLE 0.125101 0.132076 0.116915--0.133287
MDE 0.140132 0.146378 0.131059--0.149205
TABLE B-VI
CVN Distance Statistics
Sample size 8
True P 1
True Q 2
SRS BUEEEERSSESESESRERNEERASESERNESEESANEERNEEESEREEERR N NN EEIEIRE IR IR IE R NS
MCYN SDCYM 33% C.1.
NME 0.132165 0.140954 0.123429--0.140901
MLE 0.129635 0.144304 0.120691--0.138579
MDE 0.147750 0.164972 0.137525~--0.1579175
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TABLE B-VII

CVM Distance Statistics

Sample size 12

True P 3

True Q 3
 EBE R EEEE S AT R S E EE N AR E R E E I T e R S S E EE S E ST EE R ERKD
NCVM SDCVM 95% C.1. |
MME 0.121909 0.138635 0.113316--0.130502 |
MLE 0.123787 0.140387 0.115086--0.132488 |
MDE 0.141451 0.167972 0.131040--0.151862 :

TABLE B-VIII

CVM Distance Statistics

Sample size 12

True P 9

True Q 4
MCYM SDCVYM 935% C.I. |
MME 0.116762 0.129083 0.108761--0.124763 |
MLE 0.118035 0.129308 0.110020--0.126050 |
MDE 0.138822 0.150955 0.129466--0.1481178 :

TABLE B-IX

CVM Distance Statistics

Sample size 12

True P 1

True Q 2
MCYX SDCYN 5% C.1. |
MNME 0.127104 0.141719 0.118320--0.135888 |
MLE 0.119488 0.134865 0.111129--0.127847 |
MDE 0.141441 0.168347 0.131007--0.151875 :
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TABLE B-X

CVN Distance Statistics

Sample size 16

True P 3

True Q 3
B EEE S EE R EE R R R R R R E  E R T E T N E S E RS EEEREEEDNAERENEEER SRR X
MCVM SPCVM 95% C.1, |
MME 0.114084 0.132344 0.105881-~0.122287 ]
MLE 0.115781 0.129284 0.107768--0.123794 |
MDE 0.131064 0.154444 0.121491--0.140637 =

TABLE B-XI

CVM Distance Statistics

Sample size 16

True P 9

True Q 4
AR R E N e T T I N S R R T e I N R T R E R T EERERN TS ESEERETI SN
MCVM SDCYM 95% C,I. |
MNE 0.114048 0.132149 0.1058587-~-0.1222139 {
MLE 0.1177517 0.135425 0.109363--0.126151 |
MDE 0.130373 0.149206 0.121125-~-0.139621 :

TABLE B-X11I

CVM Distance Statistics

Sample size 16

True P 1

True Q 2
EBEPESEEBEAERREESAERESERESERREEN RSN IRI I RS IR I IS IS SIS K RS B K ARSI I N A I
NCVM SDCYX 3% C.1. |
NME 0.131006 0.149941 0.121713--0.140299 ]
MLE 0.123323 0.143858 0.114407--0.132239 |
MDE 0.1414438 0.168164 0.131025--0.151871 {
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TABLE B-XIII

CVN Distance Statistics

Sample size 20

True P 3

True Q 3
R E R R RS EE R R e R R R S R e R I E SN S E S EEEEEEEEE DT
| MCVM SDCYM 95% C.I, |
| MME 0.109630 0.124946 0.101886--0.117374 |
| MLE 0.112547 0.125415 0.104770--0,120316 |
} MDE 0.128660 0.147926 0.119491--0.137829 =

TABLE B-XIV

CVM Distance Statistics

Sample size 20

True P 9

True Q 4
A EEAEEE R R N E S SR R R R T R R SRR R R E S E S E S E R EED
I MCYM SDCVM 95% C.I. [
| MME 0.119805 0.135413 0.111412--0.128198 {
| MLE 0.124453 0.137251 0.115946--0.132960 |
} MDE 0.137788 0.154729 0.128198--0.147378 |
|

TABLE B-XV

CVM Distance Statistics

Sample size 20

True P 1

True Q 2
SENEEREEESSENASES SN EEEEEESESFEESEEESERSEEESEENRE NS NI IR IR E S I AN
[ MCYM SDCYM 95% C.I. |
| MNME 0.122389 0.135526 0.113989--0.130789 |
| MLE 0.116783 0.130674 0.108684—-0.124882 |
{ MDE 0.131730 0.148973 0.122497--0.140963 =
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PROGRAM BETAGEN

S0ELSELBEB PSSR LS EE SR NS LS2HSERCEBEELIS LS SLESSOUESE SS9 SSRERS
[ J

* WRITTEN BY 2LT DAVID E. BERTRAND AFIT/GOR-81D FOR MS THESIS
he DECEMBER 1981

PURPOSE:  GENERATION OF SAMPLES OF BETA RANDON VARTATES
CALCULATION OF MEAN AND STANDARD DEVIATION OF SAMPLES®*
CALCULATION OF ESTIMATES OF A AND B BY INTERPOLATION *

L 4

VARIABLES: DSEED - SEED FOR RANDOM NUMBER GENERATOR

P — FIRST SHAPE PARAMETER OF TRUE DISTRIBUTION
Q —~ SECOND SHAPE PARAMETER OF TRUE DISTRIBUTION
A

B

'

LOWER LIMIT OF TRUE DISTRIBUTION
— UPPER LIMIT OF TRUE DISTRIBUTION

NR -~ DESIRED SAMPLE SIZE

NREPS — NUMBER OF SAMPLES TO BE GENERATED

GGBTR -~ IMSL ROUTINE WHICH GENERATES
STD BETA VARIATES
VSRTA - IMSL ROUTINE WHICH SORTS AN ARRAY
INTO ASCENDING ORDER
SUM - DUMMY VARIABLE USED IN FINDING MEAN, STD DEV

X = ARRAY CONTAINING SAMPLE POINTS

MEAN ARITHMATIC MEAN OF SAMPLE

SD STANDARD DEVIATION OF SAMPLE (BIASED)

11 — MEDIAN RANK OF FIRST ORDER STATISTIC

Y2 MEDIAN RANK OF SECOND ORDER STATISTIC
YN1 MEDIAN RANK OF N-1ST ORDER STATISTIC

IN =~ MEDIAN RANK OF NTH ORDER STATISTIC
SLOPE - SEE EQUATION 3.6 IN THESIS

ESTA -~ INTERPOLATED ESTIMATE OF A: SEE EQN 3.7
ESTB - INTERPOLATED ESTIMATE OF B: SEEE EQN 3.8

I/0 FILES: INPUT - UNFORMATTED INPUT OF TRUE PARAMETER VALUES
TAPES ~ OUTPUT OF TRUE PARAMETERS, SAMPLES,
CALCULATED VALUES

IMPORTANT: IMSL LIBRARY MUST BE ATTACHED BEFORE PROGRAM IS RUN
REVIEW IMSL MANUAL ON GGBTR AND VSRTA BEFORE RUNNING

L B K BN BN BN X BN B IR 2 B AR BN Y BN BN K NI NN N N I N R NN I Y

L B R B K K BE BE R B R BN BN NN BN NN BN N NN NN A N IR N N N

8082002 E0SEELSLRESSLISELRILLRN LSRN0V 0SISSERFIESUSS LS8 SNR SR RS SR
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ana

EXTERNAL GGBTR,VSRTA
DOUBLE PRECISION DSEED
DIMENSION X(50)

REAL P,Q,MEAN

INTEGER NR

DSEED=1859217525.D0

READ PARAMETERS AND WRITE THEM TO FILE
READ®*, P,Q,A,B,NR,NREPS

WRITE(5,100) NREPS,NR,P,Q,A,B

100 FORMAT(I4/13/4(F10.6/))

103

101

10

20

$ssss BEGIN LOOP FOR GENERATION OF SAMPLES **##s

DO 999 J=1,NREPS
WRITE(5,103) J
FORMAT(I4)
GENERATE AND SORT SAMPLE FROM STANDARD BETA
CALL GGBTR(DSEED, P, @,NR,X)
CALL VSRTA(X,NR)
UNSTANDARDIZE RANDOM VARIATES,
WRITE DATA TO FILE
CALCULATE MEAN
DO 10 I=1,NR
X(I)=(B-A)*X(I)+A
WRITE(S,101) X(I)
FORMAT (F10.6)
SUM=SUM+X(I)
CONTINUE
MEAN=SUM/NR
CALCULATE STANDARD DEVIATION
SUM=0.0
DO 20 I=1,NR
SUM=SUM+ (X (I)~MEAN) * (X (I)-MEAN)
CONTINVE
SD=( SUM/NR) ##0 . 5
CALCULATE MEDIAN RANKS
INTERPOLATE TO ESTIMATE A AND B
Y1=(1.~0.3)/(NR+0.4)
¥2=(2.~0.3)/ (NR+0.4)
SLOPE=(Y2-Y1)/ (X(2)-X(1))
EQUATION 3.7:
ESTA=X(1)~Y1/SLOPE
IN1=(NR-1-0.3)/ (NR+0.4)
IN=(NR-0.3) / (NR+0 . 4)
SLOPE=(YN-YN1) / (X(NR)-X(NR-1) )
EQUATION 3.8:
ESTB=(1-YN) / SLOPE+X(NR)
WRITE CALCULATED VALUES TO FILE
WRITE(S,102) ESTA,ESTB,MEAN,SD

102 FORMAT(F10.6/F10.6/F10.6/F10.6)

sssss END LOOP %¢ees

999 CONTINUE

sTOP
END
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APPENDIX D

COMPUTER LISTING OF PROGRAM MOMENTS
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PROGRAM MOMENTS

I T TR P T T T I Iy P Ry I P T P R e P T T P T PP Y
c . »
Y * WRITTEN BY 2LT DAVID E. BERTRAND AFIT/GOR-81D FOR MS THESIS .
C . DECEMBER 1981 .
c . .
c ¢ PURPOSE: TWO AND FOUR MOMENT ESTIMATION OF .
C » THE BETA DISTRIBUTION b
c . *
C * VARIABLES: NREPS ~ # SAMPLES FOR WHICH ESTIMATION DONE (INPUT) *
C b N ~ SAMPLE SIZE (INPUT) .
C * PR = TRUE VALUE OF FIRST SHAPE PARAMETER (INPUT) *
C . QR ~ TRUE VALUE OF SECOND SHAPE PARAMETER (INPUT) *
C . AR ~ TRUE LOWER LIMIT OF DISTRIBUTION (INPUT) *
C . BR ~ TRUE UPPER LIMIT OF DISTRIBUTION (INPUT) *
c . NDIV -~ NUMBER OF TIMES 4 MOMENT ESTIMATION FAILS .
. C * K ~ SAMPLE INDEX (INPUT) .
c b X ~ ARRAY OF SAMPLE POINTS (INPUT) .
¥ c . P ~ ESTIMATE OF FIRST SHAPE PARAMETER .
c . Q ~ ESTIMATE OF SECOND SHAPE PARAMETER »
C . A ~ ESTIMATE OF LOWER LIMIT (INITIAL VALUE INPUT)*
C . B ~ ESTIMATE OF UPPER LIMIT (INITIAL VALUE INPUT)*
C . MEAN ~ ARITHMATIC MEAN OF SAMPLE (INPUT) *
b c b SD — STANDARD DEVIATION OF SAMPLE (INPUT) d
C . T# — SUM OF (X(I)**#), #=1,...4 *
C . Y ~ STANDARDIZED MEAN .
C * A ~ STANDARDIZED SAMPLE DEVIATION i
C . ZSCNT ~ IMSL ROUTINE WHICH SOLVES SIMULTANEOUS .
C » NONLINEAR EQUATIONS BY THE SECANT METHOD .
c . NPAR - # PARAMETERS SOLVED FOR BY ZSCNT ( = # EQNS) *
c . NSIG -~ # SIGNIFICANT DIGITS ZSCNT TO SOLVE FOR .
c . ITMAX ~ MAXIMUM # ITERATIONS ZSCNT ALLOWED b
C hd PAR -~ ARRAY OF PARAMETERS INPUTED BY ZSCNT 4
C he c ~ ARRAY OF CONSTANTS INPUTED BY ZSCNT .
C . CONTAINS SAMPLE SKEWNESS, SAMPLE KURTOSIS *
] C . FCN - SUBROUTINE CONTAINING EQUATIONS TO BE SOLVED *
c . FNORM - ZSCNT PARAMETER ( SEE IMSL MANUAL ) .
C . v — ZSCNT WORKSPACE ( SEE IMSL MANUAL ) d
c * IER - ZSCNT GENERATED ERROR INDICATOR .
C e ( SEE IMSL MANUAL ) .
c . .
C s I/0 FILES: TAPES - INPUT, CONTAINS TRUE PARAMETERS AND RANDOM *
C . SAMPLES WITH ESTIMATED A + B, MEAN, STD DEV. *
C . TAPE6 - OUTPUT,CONTAINS TRUE PARAMETERS AND 4-MOMENT *
c be PARAMETER ESTINATES FOR EACH SAMPLE .
C e TAPE? - OUTPUT,CONTAINS TRUE PARAMETERS, AND 2-MOMENT®*
C . ESTIMATES OF P+Q, INTERPOLATED ESTIMATES OF *
C * A+B FOR EACH SAMPLE .
C b OUTPUT- CONTAINS MESSAGE ON # OF TIMES 4—-MOMENT .
C . ESTIMATION FAILED .
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s IMPORTANT: IMSL LIBRARY MUST BE ATTACHED BEFORE PROGRAM IS RUN

L J
L ]
. REVIEW IMSL MANUAL ON ZSCNT BEFORE RUNNING .
]

SSS08S5000 0SB ESESPIRSRIEERELSSSEESP080 0088888000083 88080020888

EXTERNAL ZSCNT,FCN
DIMENSION X(50),PAR(2),C(2),W(42),F(2)
REAL MEAN

READ IN TRUE PARAMETERS AND
WRITE THEM TO FILE
READ(5,100) NREPS,N,PR,QR,AR,BR
100 FORMAT(I4/I3/4(F10.6/))
WRITE(6,106) NREPS
WRITE(7,106) NREPS
WRITE(6,101) N
WRITE(7,101) N
101 FORMAT(I3) ’
WRITE(6,102) PR,OR,AR,BR
WRITE(7,102) PR,QR,AR,BR
102 FORMAT(4(F10.6,3X)/)
INITIALIZE DIVERGENCE COUNTER
NDIV=0
sssss BEGIN LOOP FOR NREPS SAMPLES s¢ess
DO 999 J=1,NREPS
READ(5,106) K
106 FORMAT(I4)
INPUT SAMPLE POINTS
AND CALCULATE SUMS
T2=0.0
T3=0.0
T4=0.0
DO 1 I=1,N
READ(5,103) X(I)
103 FORMAT(F10.6)
T2=T2+X(I)**2
T3=T3+X(I)9®e3
T4=T4+X(1)**4
1  CONTINUE
INPUT CALCULATED VALUES
READ(5,104) A,B,MEAN,SD
104 FORMAT(F10.6/F10.6/F10.6/F10.6)
T1=MEAN*N
FIND 2-MOMENT ESTIMATES OF P,Q
Y=(MEAN-A) / (B-A)
Z=SD/ (B-A)
P=(Y*Y*(1-Y))/(Z*Z) -Y
Q=((1-Y)*(1-Y)*Y)/(Z*Z) -(1-Y)
WRITE SAMPLE INDEX, 2-MOMENT ESTIMATES OF
P+Q, AND INTERPOLATED ESTIMATES OF A+B TO FILE
YRITE(7,106) K
WRITE(7,102) P,Q
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SET PARAMETERS FOR ZSCNT
" NPAR=2
NSIG=3
ITMAX=100
SOLVE 3RD AND 4TH MOMENT EQNS FOR P,Q
PAR(1)=P
PAR(2)=Q
CALCULATE SAMPLE SZEWNESS + EKURTOSIS
USING EQNS 3.15 AND 3.16 IN THESIS
C(1)=(N*N*T3-3oN*T2*T1+29T1%%3)/(SD**3sN*(N-1) *(N-2))
C(2)=( (N®#3+N*N) *T4—4*(N*N+N) *T3*T1-3*(N*N-N) ¢T2 *#2
+12¢NAT2T19#2-6oT19%4) / (SD*e4eN*(N-1) ¢(N~-2) *(N-3))
CALL ZSCNT(FCN,NSIG,NPAR, ITMAX,C,PAR,FNORM, W, IER)
TEST FOR FEASIBILITY OF ESTIMATES
IF( PAR(1).GT.0.0 .AND PAR(2).GT.0.0) THEN
IF ESTIMATES ARE FEASIBLE, SET EQUAL TO P+qQ,
AND FIND A+B USING FIRST TWO MOMENTS
P=PAR(1)
Q=PAR(2)
A=MEAN-SD*(P*(P+Q+1)/Q) *%0.5
B=(MEAN* (P+Q)--A*Q) /P
IF ESTIMATES OF A+B ARE INSIDE 1ST AND LAST
ORDER STATISTICS, USE ORDER STATISTICS AS ESTIMATES
A=MIN(A,X(1))
B=MAX(B,X(N))
ELSE
IF ESTIMATES ARE INFEASIBLE, USE 2-MOMENT ESTIMATES
{ DON'T CHANGE VALUE OF P,Q) AND ADD 1 TO COUNTER
NDIV=NDIV+1
ENDIF
WRITE SAMPLE INDEX AND 4-MOMENT ESTIMATES
OF A,B,P,Q TO FILE
WRITE(6,106) K
WRITE(6,102) P,Q,A,B
t 12 1 1] m LOOP Ll 211
999 CONTINUE
PRINT OUT # TIMES 4-MOMENT ESTIMATION FAILED
PRINT*, ' NUMBER OF TIMES DID NOT CONVERGE =',NDIV
STOP
END
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SUBROUTINE FCN(PAR,F,NP,C)

S0 0SSEFRBLEEBELE RS0 E SO SRS SR 0800800000888 8200008003 8502088000

]
¢ PURPOSE: EVALUATE EQUATIONS WHICH ZSCNT IS TRYING TO SOLVE ¢
L ] ]
* VARIABLES: PAR,C ~ SEE MAIN PROGRAN .
. F - ARRAY OF EQUATION VALUES AT THIS P,Q .
. 1ST EQN IS DIFFERENCE BETWEEN POP. + SAMPLE +
» SKEWNESS, 2ND EQN IS DIFFERENCE BETWEEN .
. POP, + SAMPLE KURTOSIS .
. NP - NUMBER OF PARANETERS, ALSO # OF EQUATIONS ¢
. PX - SHORT NOTATION FOR PAR(1) .
. QX - SHORT NOTATION FOR PAR(2) .
] *

S50 8 S50 0SSSCSLEESLS LS ESFCESVIERPERSEL0SCRILISRES RSSO 00ES

DIMENSION PAR(NP),F(NP},C(2)

TEST FOR FEASIBILITY
IF (PAR(1).LE.0.0 .OR. PAR(2).LE.0.0) THEN
SET EQUATION VALUES TO ZERO
F(1)=0.0
F(2)=0.0
ELSE
CHANGE TO SEORTER NOTATION
PX=PAR(1)
QX=PAR(2)
EVALUATE EQUATIONS
F(1)=2,%(QX-PX) *( (PX+QX+1) **0.5)/ ((PX+QX+2) *((PX*QX) *#0.5))-C(1)
F(2)=3,*(PX+QX+1) #(2%(PX+QX) **2+PX*QX* (PX+QX~6))
+ / (PX*QX *(PX+QX+2) *(PX+QX+3))-C(2)
ENDIF
RETURN
END
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PROGRAM MDCVM

SESBECESS S SIS PREPCSSB IS LS008 0S80 RS L USSR ESRLASASSSERSREOEES

WRITTEN BY 2LT DAVID E. BERTRAND AFIT/GOR-81D FOR MS THESIS
DECEMBER 1981

PURPOSE:  MINIMUM DISTANCE ESTIMATION OF THE FOUR PARAMETERS
OF THE BETA DISTRIBUTION

VARIABLES: NREPS - # SANPLES FOR WHICH ESTIMATION DONE (INPUT)
-~ SANPLE SIZE (INPUT)
~ TRUE VALUE OF FIRST SHAPE PARAMETER (INPUT) *
-~ TRUE VALUE OF SECOND SHAPE PARAMETER (INPUT)*
-~ TRUE LOWER LINIT OF DISTRIBUTION (INPUT)
- fRUE UPPER LINIT OF DISTRIBUTION (INPUT) b
~ SAMPLE INDEX (INPUT) i
=~ ARRAY OF SAMPLE POINTS (INPUT) .
»
»

LK X B BN BN BN BN BN J

L 4

ESTIMATE OF FIRST SHAPE PARAMETER
ESTIMATE OF SECOND SHAPE PARAMETER
ESTIMATE OF LOWER LIMIT(INITIAL VALUE INPUT)*
ESTINATE OF UPPER LIMIT(INITIAL VALUE INPUT)*
~ ARITHMATIC MEAN OF SAMPLE (INPUT) *
STANDARD DEVIATION OF SAMPLE (INPUT)
STANDARDIZED MEAN

STANDARDIZED STANDARD DEVIATION

IMSL ROUTINE USED TO MINIMIZE DISTANCE
NUMBER OF VARIABLES INPUTED BY ZXMIN
NSIG # SIGNIFICANT DIGITS ZXMIN TO SOLVE FOR
MAXFN MAXIKUN # FUNCTIONAL EVALUATIONS BY ZXMIN
IOPT - ZXMIN INPUT OPTION (SEE IMSL MANUAL)

PAR - ARRAY OF PARAMETER VALUES USED BY ZXIMIN
HG W ARRAYS USED BY ZIMIN (SEE IMSL MANUAL)
DISTPQ -~ SUBROUTINE TO FIND DISTANCE, P,Q INPUT
DISTAB -~ SUBROUTINE TO FIND DISTANCE, A,B INPUT

F =~ DISTANCE VALUE: SEE SUBROUTINE

IER = ZXMIN GENERATED ERROR MESSAGE

( SEE IMSL MANUAL )

i

1
+

N"%E"”""""EBEEZ

ZXMIN
NPAR

I/0 FILES: TAPES - INPUT, CONTAINS TRUE PARANETERS AND RANDOM
SAMPLES WITH EST. A + B, MEAN, STD DEV.
TAPE6 —~ OUTPUT, CONTAINS TRUE PARANETERS AND
PARAMETER ESTIMATES FOR EACH SAMPLE

LK BE BE R B BN BN N BX BE BE BN BN N BN BN BN NN NN N W

IMPORTANT: IMSL LIBRARY MUST BE ATTACHED BEFORE PROGRAM IS RUN
REVIEW INSL MKANUAL ON ZXMIN AND MDBETA BEFORE RUNNING®

(MDBETA USED IN SUBROUTINE) . .

: ‘ .
0080200000000 03244000888808488L00204005300838000004088080¢08088¢

LN B K I B B BN S B R R N R B R R Y B BK K BN BN BE EE B EK X NE BN K NS N R R R R N R N N RN

COMMON P,Q,A,B,X(50),N

EXTERNAL ZXNIN, NDBETA,DISTPQ,DISTAB
DIMENSION PAR(2),H(3),6(2),¥(6)
REAL MEAN
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c INPUT TRUE PARAMETERS
READ(S5,100) NREPS,N,PR,QR,AR,BR
100 FORMAT(I4/13/4(F10.6/))
WRITE(6,106) NREPS
WRITE(6,101) N
101 FORMAT(I3)
WRITE(6,102) PR,QR,AR,BR
102 FORMAT(4(F10.6)/)
102 FORMAT(F10.6,3X)/)
c ssses BEGIN LOOP FOR NREPS SAMPLES ®sses
DO 99 J=1,NREPS
C INPUT SAMPLE INDEX
READ(5,106) K
106 FORMAT(I4)
c INPUT SANPLE POINTS
DO 1 I=1,N
READ(5,103) X(I)
103 FORMAT(F10.6)
1 CONTINUE
c INPUT CALCULATED VALUES
READ(5,104) A,B,MEAN,SD
104 FORMAT(F10.6/F10.6/F10.6/F10.6)
c CALCULATE 2-MOMENT ESTIMATES OF P,Q
Y=(MEAN-A) / (B~A)
Z=SD/ (B-A)
P=(Y*Y*(1-Y))/(Z*Z)-Y
Q=((1~Y)*(1-Y) *Y)/(Z*2)-(1-Y)
C SET ZXMIN PARAMETERS
NPAR=2
NSIG=3
MAXFN=500
I0PT=0
c MININIZE - DISTANCE FOR P,Q
PAR(1)=P
PAR(2)=Q
CALL ZXMIN(DISTPQ,NPAR,NSIG,MAXFN, IOPT,PAR,H,G,F,V, IER)
P=PAR(1)
Q=PAR(2)
c MINIMNIZE DISTANCE FOR A,B
PAR(1)=A
PAR(2)=B
CALL ZIMIN(DISTAB,NPAR,NSIG,NAXFN,IOPT,PAR,H,G,F,V,IER)
A=PAR(1)
B=PAR(2)
C WRITE SAMPLE INDEX, ESTINATES TO FILE
WRITE(6,105) J
105  FORMAT(I4)
WRITE(6,102) P,Q,A,B
c ssses END LOOP ®eses
999 CONTINUE
STOP
END
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SUBROUTINE DISTPQ(NP,PAR,F)

SEOS0S0SS 0SSP0 LESS SIS OSSO SEELESCRER LS PSFBSESSRESREREESISS

] L
¢ PURPOSE: FIND DISTANCE BETWEEN ESTIMATED CDF AND 1/N EDF .
. FOR VARIABLE P,Q KEEPING A,B FIXED .
* | ]
* VARIABLES: NP - NUMBER OF PARAMETERS: ALWAYS 2 .
. PAR - VECTOR OF PARAMETER VALUES P,Q .
. Y - STANDARDIZED SAMPLE POINT .
. NDBETA - INSL ROUTINE WHICH EVALUATES BETA CDF .
. z - VALUE OF BETA CDF AT POINT Y .
. IER - MDBETA GENERATED ERROR MESSAGE .
. ( SEE IMSL MANUAL) .
. SUM - DUMMY VARIABLE USED TO ADD UP DISTANCE .
. F ~ DISTANCE VALUE AT THIS P,Q,A,B .
. P,Q,A, .
. B,X,N - SEE MAIN PROGRAM .
L ] L

S350 953083 00085880 S LS00 PRS0 SELERLRELRISSSESSRLSSESS0ESERSEBRES

COMMON P,Q,A,B,X(50),N
INTEGER NP
REAL PAR(NP),F,Y,Z,SUM

SUM=0.0
DO 92 I=1,N
STANDARDIZE SAMPLE POINT
Y=(X(I)-A)/(B-A)
EVALUATE CDF
CALL MDBETA(Y,PAR(1),PAR(2),Z,IER)
ADD TO SUM FOR DISTANCE
SEE EQN 3.25
SUM=SUN+(Z-(2%1-1.)/(2.%N)) »*2
CONTINUE
SET F EQUAL DISTANCE
F=SUM
RETURN
END
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SUBROUTINE DISTAB(NP,PAR.F) -

SOSEESSSSE OSBRI BIESE PSSP B VSISO SR 0SSO ES S8 0LSES2S9898898

L ] ]
* PURPOSE: FIND DISTANCE BETWEEN ESTIMATED CDF AND 1/N EDF .
. FOR VARIABLE A,B KEEPING P,Q FIXED .
L L
* VARIABLES: NP - NUMBER OF PARAMETERS: ALWAYS 2 .
. PAR  ~ VECTOR OF PARAMETER VALUES A,B .
. Y - STANDARDIZED SAMPLE POINT .
. MDBETA ~ IMSL ROUTINE WHICH EVALUATES BETA CDF .
. z ~ VALUE OF BETA CDF AT POINT Y .
. IER - MDBETA GENERATED ERROR MESSAGE .
. ( SEE IMSL MANUAL) .
. SUM  ~ DUMNY VARTABLE USED TO ADD UP DISTANCE .
. F ~ DISTANCE VALUE AT THIS P,0,A,B .
. P,QA, .
. B.X,N - SEE MAIN PROGRAM .
] ]

SEBBOSLRSO S SR L RE RS REEERE LSS BELER LR VSRS EBICASSSSESSSL S LSS0

COMMON P,Q,A,B,X(50),N
INTEGER NP
REAL PAR(NP),F,Y,Z,SUM

USE ORDER STATISTICS IF INTERPOLATED VALUES
ARE INSIDE 1ST AND LAST ORDER STATISTICS
IF(PAR(1) .GT. X(1)) PAR(1)=X(1)
IF(PAR(2) .LT. i(N)) PAR(2)=X(N)
SUM=0 .0
DO 91 I=1,N
STANDARDIZE SAMPLE POINT
Y=(X(I)-PAR(1))/(PAR(2)-PAR(1))
EVALUATE CDF
CALL MDBETA(Y,P,Q,Z,IER)
ADD TO SUM FOR DISTANCE
SEE EON 3.25
SUM=SUM+(Z-(2*1I-1.)/(2,%N)) **2
CONTINUE
SET F EQUAL DISTANCE
F=SUM
RETURN
END
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PROGRAM EVAL

S50 0S 0500888 S0R S RSESUESRESRESSESERESLEESSEERSEEEESSOESSSERSSESSES

WRITTEN BY 2LT DAVID E. BERTRAND AFIT/GOR-81D FOR MS THESIS

PURPOSE: EVALUATE A SET OF ESTIMATES ON THE BETA DISTRIBUTION
— CALCULATE THE MEAN SQUARE ERROR OF THE SET FOR

EACH OF THE FOUR PARAMETERS

- FIND THE CVM DISTANCE BETWEEN THE ESTIMATED AND

TRUE CDF, AND FIND MEAN AND STD DEV OF CVM FOR SET*

DECEMBER 1981

® & 8 & 6 8 46

*

~ # OF ESTIMATES OF EACH PARAMETER IN SET *
(INPUT) .
SIZE OF SAMPLES ON WHICH ESTIMATES ARE BASED®*
(INPUT) .

*

]

»

L

]

*

g

L J

*

t ]

* VARIABLES: NREPS
g

. N

L J

. PR

. QR

* AR

* BR

* X

-

* WV

*

. SUM1
L

. SEP
. SEQ
* SEA
. SEB
. P

. Q

* A

. B

* SUM
* Y

. MDBETA -
. IER
L

. FN

. FR

. BETA
. GAMMA
. F

. CVN
L 4

. MSE
. NSEQ
. MSEA
. MSEB
) NCVM
. SDCVM

TRUE VALUE OF FIRST SHAPE PARAMETER (INPUT) *
TRUE VALUE OF SECOND SHAPE PARAMETER (INPUT)*
TRUE VALUE OF LOWER LIMIT (INPUT) *
TRUE VALUE OF UPPER LIMIT (INPUT) .
ARRAY CONTAINING GAUSSIAN QUADRATURE POINTS *
(INPUT) .
ARRAY CONTAINING GAUSSIAN QUADRATURE WEIGHTIS*
(INPUT)

DUMMY VAR. USED TO SUM CVM STATS OF EACH
REPITITION

SQUARED ERROR OF P IN THIS REPITITION
SQUARED ERROR OF Q IN THIS REPITITION
SQUARED ERROR OF A IN THIS REPITITION
SQUARED ERROR OF B IN THIS REPITITION
ESTIMATE OF FIRST SHAPE PARAMETER (INPUT)
ESTIMATE OF SECOND SHAPE PARAMETER (INPUT)
ESTIMATE OF LOWER LIMIT (INPUT)

ESTIMATE OF UPPER LIMIT (INPUT)

DUMMY VAR FOR EVAL OF INTEGRAL BY QUADRATURE®
STANDARDIZED QUADRATURE POINT

IMSL ROUTINE WHICH EVALUATES STD BETA CDF
MDBETA GENERATED ERROR INDICATOR

( SEE IMSL MANUAL )

VALUE OF ESTIMATED CDF AT QUADRATURE POINT
VALUE OF TRUE CDF AT QUADRATURE POINT

BETA FUNCTION - SEE EON 3.7?

IMSL ROUTINE WHICH EVALUATES THE GAMMA FCN
VALUE OF TRUE PDF AT QUADRATURE POINT
ARRAY CONTAINING CVM DISTANCE BETWEEN
ESTIMATED AND TRUE CDF FOR EACH REPITITION
MEAN SQUARE ERROR OF P

MEAN SQUARE ERROR OF Q

MEAN SQUARE ERROR OF A

MEAN SQUARE ERROR OF B

MEAN OF THE CVM DISTANCES

STD DEV OF THE CVM DISTANCES

L K R K N BN R BE NN B ER J

L 2K 2R BN B BN BN BX BX BN BE BE K BX BN BE X J
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I/0 FILES: TAPE6 - INPUT, CONTAINS TRUE PARAMETER VALUES AND
ESTIMATES FOR EACH REPITITION
TAPET - OUTPUT, CONTAINS MSE’S AND MEAN + STD DEV
OF CVM DISTANCES
INPUT - CONTAINS 8 POSITIVE QUADRATURE POINTS AND
VEIGHTS FOR 16 POINT GAUSSIAN QUADRATURE

L 20 BE BE BE BN BN BN BN )

IMPORTANT: IMSL LIBRARY MUST BE ATTACHED BEFORE PROGRAM IS RUN

REVIEW IMSL MANUAL ON MDBETA AND GAMMA BEFORE RUNNING®*
*

SSRGS NEOS LSS L C LR LRSS HSL LSS RIORSOSSIEER LSS SB LS SLEES 2SR S

*® % 8 8 8 8 800 ua

EXTERNAL MDBETA,GAMMA
REAL X(8,2),V(8),MCVM,MSEP, MSEQ, MSEA, MSFEB, CVM(1000)

INPUT TRUE PARAMETER VALUES
READ(6,100) NREPS,,N,PR,QGK,AR,BR
100 FORMAT(I4/I3/4(F10.6.3X)/)
INPUT QUADRATURE POINTS AND WEIGHTS
po1 1=1,8
READ®*, X(I,1),W(I)
X(1,2)=-1.*X(1,1)
TRANSLATE QUAD PTS TO (AR,BR) INTERVAL
DO 2 J=1,2
X(I,7)=((BR-AR)/2)*X(I,J)+(BR+AR)/2
2 CONTINUE
1 CONTINUE
INITIALIZE SUMS
SUM1=0.0
SEP=0.0
SEG=G.0
SEA=0.0
SEB=0.0
s#s3% BEGIN LOOP FOR NREPS REPITITIONS #ssss
DO 999 K=1,NREPS
INPUT PARAMETER ESTIMATES
READ(6,101) P,Q,A,B
101 FORMAT(/4(F10.6,3X)/)
EVALUATE CVM INTEGRAL BY QUADRAIURE
SUM=0.0
DO 888 J=1,2
Do 777 I=1,8
STANDARDIZE QUADRATURE POINT
USING ESTIMATED VALUES OF A + B
Y=(X(I,JT)=-A)/(B=-A)
RESET STANDARDIXED QUAD PT IF
IT 1S OUTSIDE ESTIMATED RANGE
IF(Y.LT.0.0) Y=0.0
IF(Y.GT.1.0) Y=1.0
EVALUATE EST. BETA CDF
CALL MDBETA(Y,P,Q,FN,IER)
STANDARDIZE QUADRATURE POINT
USING TRUE VALUES OF A + B
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Y=(X(I,J)-AR)/(BR-AR)
EVALUATE TRUE BETA CDF
CALL MDBETA(Y,PR,OR,FR,IER)
EVALUATE TRUE BETA PDF
BETA=GAMMA (PR) *GAMMA (QR) / GAMMA (PR+QR)
F=(1/BETA)*(X(1,J)-AR)**(PR-1)*(BR-X(I,J))**(QR-1)
/ (BR-AR) **(PR+QR-1)
ADD TO SUM FOR EVAL. OF INTEGRAL
SUM=SUM+W(I) *(FN-FR) *$2*F
7717 CONTINUE
888  CONTINUE
CALCULATE CVM STATISTIC
CVM(K)=N*( (BR-AR)/2) *SUM
ADD TO SUMS FOR CVM, SQUARED ERRORS
SUM1=SUM1+CVM(K)
SEP =SEP+(PR-P)*#*2
SEQ =SEQ+(QR-Q) **2
SEA =SEA+(AR-A)**2
SEB =SEB+(BR-B)**2
#3283 END LOOP #¢s*»
999 CONTINUE
CALCULATE MEAN SQUARE ERRORS, MEAN CVM
MSEP= SEP/NREPS
MSEQ= SEQ/NREPS
MSEA= SEA/NREPS
MSEB= SEB/NREPS
MCVM=SUM1/NREPS
CALCULATE STD DEV OF CVM STATISTICS
SUM=0.0
DO 3 K=1,NREPS
SUM=SUM+ (CVM(K)-MCVM) **2
3 CONTINUE
SDCVM=( SUM/NREPS) **0 . 5
WRITE RESULTS TO FILE
WRITE(7,163) MSEP,MSEQ,MSEA, MSEB,MCVM,SDCVM
103 FORMAT(4(F10.6,3X)/2(F10.6,3X))
STOP
END
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